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Chromosome mapping: Radiation hybrid data and stochastic spin models
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This work approaches human chromosome mapping by developing algorithms for ordering markers
associated with radiation hybrid data. Motivated by the recent work of Boehnke, Lange, and Cox [Am.
J. Hum. Genet. 49, 1174 (1991)], we formulate the ordering problem by developing stochastic spin mod-
els to search for minimum-break marker configurations. In one particular application, the methods
developed are applied to 14 human chromosome-21 markers tested by Cox et al. [Science 250, 245
(1990)]. The methods generate configurations consistent with the best ones found by others. Additional-
ly, we find that the set of low-lying configurations is described by a Markov-like ordering probability dis-
tribution. The distribution displays cluster correlations reflecting closely linked loci.

PACS number(s): 87.10.+e¢, 02.70.—c, 05.20.—y

I. INTRODUCTION

The use of data from radiation hybrid (RH) experi-
ments has become a useful method for fine structure map-
ping of human chromosomes. Based on methods de-
scribed by Goss and Harris [1,2], Cox et al. [3], and Bur-
meister et al. [4] have developed the technique in detail
so that results from their experiments provide material
for ordering DNA markers on human chromosomes.

The basic strategy employed in radiation hybrid map-
ping (fully described in Cox et al. [3]) entails irradiating a
rodent-human somatic cell hybrid, which contains a par-
ticular human chromosome, with a lethal dose of x rays.
This will cause the chromosomes to break into several
fragments. After fusion with HPRT-deficient rodent cell
lines, only the fused cells, containing both the x-ray irra-
diated cells and the normal rodent cells, will survive if
grown in HAT medium. Detailed descriptions of HPRT
and HAT are contained in Ref. [3]. Each hybrid clone
arising from this fusion will contain a unique set of frag-
ments from the original human chromosome. Each clone
can then be typed for a set of human DNA markers
(equivalently, loci) known to be on that human chromo-

some. Based on the assumption that tightly linked mark- -

ers are unlikely to be broken apart by the radiation,
markers close to one another will show a correlated pat-
tern of retention in the clones; whereas, distant markers
will be retained in a relatively independent manner.
Several methods for ordering markers have been
developed using results from RH experiments [including
both parametric (Cox et al. [3], Boehnke et al. [5]) and
nonparametric methods (Boehnke et al. [5], Falk [6],
Bishop and Crockford [7], Weeks et al. [8]). In particu-
lar, Boehnke et al. [5] used a mathematical quantity asso-
ciated with the number of breaks and then used optimiza-
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tion techniques to minimize that quantity. One optimiza-
tion technique involved a simulated annealing search for
configurations associated with minimal numbers of
breaks.

We set out to study and understand the work of
Boehnke et al., and we developed a formulation in the
context of stochastic spin systems (Falk [9]). It may be
useful to point out some differences in the formulations.

Boehnke et al. use block inversions of a given marker
order and compare the old and new orders with respect
to “obligate” breaks. They then apply simulated anneal-
ing techniques and decide, at each time step, whether to
retain the original order or transition to the new. If a
transition would result in a smaller number of breaks, the
transition is made with probability 1. If a transition
would not decrease the number of breaks, then the transi-
tion probability is less than 1, and that transition proba-
bility systematically decreases over time.

In our study we implement three algorithms which in-
corporate the number of “breaks.” The three algorithms
are three stochastic spin models. These, too, are designed
to search for configurations with small numbers of
breaks. A probability is constructed to determine wheth-
er or not to retain the current order or transition to the
new. The probabilities are set up so as to bias the de-
cision towards transitions to configurations with fewer
breaks; however, at a given step, a possible transition
leading to a smaller number of breaks will not necessarily
be realized.

The spin language provides mathematically intuitive
expressions for the number of breaks. Those expressions
contain products of adjacent spin variables, and calcula-
tions involving breaks are easily presented in spin nota-
tion. For those seeking a rigorous mathematical setting,
we remark that Liggett [10] has treated stochastic spin
models and related models from biology, physics, and
economics. Liggett’s book contains an extensive bibliog-
raphy and guides the reader to survey papers by
Griffeath, Durrett, Stroock, Holley, and others.
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II. METHODS

We are considering M cones, each of which is tested
for the presence (or absence) of N different DNA mark-
ers. It is convenient to represent the clones as M rows,
each with N sites. Thus, one pictures a two-dimensional
array of M rows, N columns:

1 2 . N
1 ® O o6 o o o o o
2 ® o 6 o o o o o
e 6 o o o o o o
e 6 o o o o o [ J
M o o oo o o o o ®
Assign a particular  DNA  marker, labeled f;,

(j=1,2,...,N), to each column. Associate a variable
(“a spin”) s;; with the site at row i, column j. If the
marker f; is present at site (i, ), take s;; = +1; if f; is not
present at site (,j), take s;=—1 If one is uncertain as
to whether a marker is present at site (i,j), we take s;; to
be unknown, and we deal with such sites in a manner to
be specified subsequently.

For (j=1,2,...,N) the marker f ; was arbitrarily as-
signed to column j. But any of the N! assignments would
be possible. A criterion is needed for judging the “good-
ness” of an assignment.

Considering the DNA markers being tested for lie on a
particular human chromosome, those markers which are
tightly linked are likely to appear together or not appear
in each clone. Therefore, it is reasonable to seek those
marker assignments which reflect such correlation. For
that purpose we say that a ‘“break” exists between sites
(i,j) and (i,j +1) whenever s;s; ;1= —1. The strategy
is to minimize the total number of breaks. Note that in
the two-dimensional array of spins, a break refers only to
horizontal, nearest-neighbor spin pairs.

Here we devise and test several algorithms which mon-
itor the total number of breaks while selectively permut-
ing column labels. The algorithms attempt to explore the
vast configuration space in the manner of a ‘“random
walk,” biased toward configurations having a reduced
number of breaks. Notice that for N =14 there are
N!=87178291200 permutations of the numbers
(1,2,...,14). Thus, in the spirit of the traveling sales-
man problem, simulated annealing techniques are used
(Kirkpatrick et al. [11], Press et al. [12]).

A. Nearest-neighbor transposition algorithm

(0) Start with a specified configuration {s} of the vari-
ables s;;.

(1) Select a number j at random from the set
{1,2,...,N}.

(2) If j5*N, compute the total number of breaks be-
tween columns j —1,j and between columns j +1,j +2.
Denote that number by B;(1):

M 1—s, i 15,
Bi()= 3 |(1=8;)—5—*
g=1
1—5, 415, ;
=8,y )2 @

for j€{1,2,...,N —1}. The Kronecker delta contained
in (1—8,;) is inserted to handle “end effects” since
column 1 has no left neighbor and N has no right neigh-
bor.

(3) Repeat (2) with the spin values s;; and s, ; ; inter-
changed for i =1,2, ..., M, and denote the resulting sum
by B;(2) instead of B;(1).

(4) Then compute Bj, the change in the number of
breaks resulting from the interchange of the columns of
spin values s;; and s; ; 4.

B;=B;(2)—B;(1) for j€{1,2,...,N—1}. (22)

(5) Interchange DN A marker column assignments and
the associated spin values for columns j and j +1 with
probability

exp(—BB; /M)
w,;= { 2cosh(BB; /M)
0 for j=N .

for j€{1,2,...,N—1}

(2.3)

Do not interchange DNA marker column assignments
and the associated spin values for columns j and j +1
with probability

w2j:1_wlj . (24)
Note
exp(+BB; /M)
— for jE€{1,2,...,N—1
wy;= | 2cosn(pB, /) O €1 boes)
1 for j=N .

The “inverse temperature” parameter 8 (0=f< o) is
allowed to increase in an empirically determined manner
as the algorithm is implemented. Clearly very large
strongly favors transitions reducing the number of
breaks, whereas, a small, positive value of 8 makes transi-
tions to increase or to decrease the number of breaks al-
most equally likely. Why not just take B large at the
outset? The answer is (Kirkpatrick et al. [11], Press
et al. [12)) that setting B large early in the calculation
may cause the algorithm to get “trapped” in a local
minimum before performing a significant search of
configuration space.

Thus, the initially chosen value for 8 and the manner
of increasing that value constitute the “art” of simulated
annealing.

(6) Return to (1) and repeat the procedure starting with
the current configuration {s'} of the variables s;;. The
procedure may be terminated after a specified number of
iterations and/or when the total number of breaks

B= % Nt 1=54i84,j+1

2.6
g=1 j=1 2 2o

has realized acceptably small values. For each run one
retains the configurations associated with the smallest
values of B.

If B were fixed, then the above procedure would define
a finite-state, discrete-time Markov chain with transition
probability p({s'}|{s}) from a configuration {s} to
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configuration {s’}. Explicitly

, I M| 1+, 541 l+s;’j+1s N 1+5S
pilis]) Nj§1 q=1 [ 2 2 kI=Il 2 Y
k#j,j+1

B. Two-column transposition algorithm

A natural extension of the nearest-neighbor transposi-
tion algorithm involves columns k,j with k£ >j +1. Re-
move two numbers at random from the set {1,2,...,N}.
Denote the smaller number by j and the larger by k. If
k=j+1, follow the previously described nearest-
neighbor algorithm, starting with step (2). If k>j+1,
proceed as follows.

Consider the total number of breaks between columns
J—Lj;jj+1; k—1,k;k,k +1. Denote that number by
B, (1), where

M l_s’-_ls ; 1—s -s,-+1
B()=73 [(1_51_’1) qé 9j q12q1
g=1
1 =5, k— 15 1 =SSk +1
42 g +(1—8; ) q2q
(2.8)
After interchanging spin values s; and s, for

i=1,2,...,M, the number of breaks is

M 1—=5, ;15 L—=s8, i +1
Bjk(2)= 21 (1_51',1) ‘1; 9 ‘]241
a=
1—5g 1k —154 1= 54iSqk+1
I ‘2" _‘_+(1—8k,N) 2 B

(2.9

Then the change (in the number of breaks) resulting
from the interchange is denoted by B, where

Bj =B (2)—B (1) . 2.10)

Now interchange DNA marker column assignments
and the associated spin values for columns j,k for
k > j +1 with probability

exp(—BB; /M)

g = for j€{1,2,...
Wijk 2cosh(BBj /M) or &1L,

,N—2} .
(2.11)

Do not interchange DN A marker column assignments
and the associated spin values for columns j and k with
probability

wzjk=1—w1jk . (2.12)

C. Block-flip algorithm

As in the preceding algorithm, remove two numbers at
random from the set {1,2,...,N}. Denote the smaller

(2.7)

number by j and the larger by k. If k =j +1, follow the
previously described nearest-neighbor algorithm, starting
with step (2). If k > j +1, proceed as follows.

The block consists of columns j,...,k. Before flip-
ping the block, the number of breaks involving columns
j—1,jand columns k,k +1is

M 1—s. :_+S.:
block/ 1\ — _ a,j —1°qj
Bjkoc(l)_g (1 61"1) 2
g=1
1—5,5
+(1—ak,N)—""2—"—"‘—+—l (2.13)
After flipping the block, the number of breaks is
M 1—s,,18
B})klock(z)z.z (1—"81-,1) q,;' 1°gk
g=1
1—s,;s
+(1—ak,N)——‘%"—“— (2.14)

Then the change in the number of breaks is denoted by
B}’kl°°k, where

BRPek=BR*(2)—BjK(1) . (2.15)
Now flip the block with probability
exp( — B!)lock/M)
tlgok — 2P d o for jE{1,2,...,N—2] .
2 cosh(BB;;°* /M)
(2.16)
Do not flip the block with probability
wigk=1—wii* . (2.17)

The preceding method is similar to the block inversion
algorithm used by Boehnke et al., but our transition
probabilities differ from theirs.

D. Unknown site content

In any clone one may have strings of one or more sites
where the DNA marker associated with each site in a
string is unknown. Thus, the spin values are unknown
for the string. In the above algorithms such unknowns
are dealt with in the following way.

Consider the case where the left and right ends of a
string connect, respectively, to known spin s, and to
known spin Sy, If Sien =S4, then all spins in the
string are replaced by sygh. If Si 7 Spign> then a fair
coin toss is simulated. If the coin shows head (tail), then
all spins in the string are replaced by +1(—1).

If a string (of unknowns) contains an end spin, then re-
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TABLE I. Fourteen chromosome-21 markers used in the examples. All numbered loci have a prefix
of D21, APP denotes amyloid precursor, and SOD denotes superoxide dismutase.

APP S1 S4 S8 S1i S12  S16 S18 S46 S47 S48 S§52 S111 SOD

place all spins in the string by the value of the connecting tional challenge for the first algorithm. The other two al-
Spin (Sieg OT Spgne), @s appropriate. gorithms display improved ability to achieve low B values
With all spin values now specified, the number of with the chosen set of parameters. Additionally these al-
breaks can be calculated for any of the above algorithms, gorithms reach the same optimal order as that attained
and the relevant transition probability can be evaluated. by Boehnke et al. (see their Table 2), with the same num-
The simulated annealing proceeds one step. After that ber of breaks. The only difference is that we have re-
step, all of the previously unknown spin values are again  tained all 14 markers, whereas they combined markers
regarded as unknown. (Note: Due to a possible column S12 and S111, since the latter markers were indistin-
interchange or block flip, those unknown spins, which  guishable in the data matrix. Hence for each marker or-
previously belonged to particular strings, may now be- der in their Table 2, we would have two orders.
long to different strings.) The above prescription for re- Although algorithms such as these do not assure that
placing unknown spin values by +1 or —1 is now repeat-  the marker order with the smallest number of breaks is
ed, and the transition probabilities are reevaluated. The the correct order, inspection of a set of low-lying states

simulated annealing proceeds another step, etc. leads to some useful information about the stability of
clusters of markers that retain their local ordering. For
III. APPLICATION example, consider the set of unique permutations

representing the 24 “best” orders obtained from a series
of runs of the three algorithms (Table III). We see, e.g.,
that S47 and SOD are nearest neighbors in all 24 permu-
tations and appear as the last two markers in 16 permuta-
tions. Similarly, the triplet S46-S4-S52 is preserved in 21
permutations and of these, positions 2, 3, and 4 contain
S46, S4, and S52, respectively, 15 times. Based on obser-
vations such as these, we looked for a general ordering
property associated with sets of low-lying configurations.

As an example, consider the data presented by Cox
et al. [3] relating to 14 markers on chromosome 21 that
were tested in 99 RH clones. The 14 markers are given in
Table I. These are the same data used by Boehnke et al.
[5] and presented in detail in their Table 1. For our algo-
rithms an entry of 1 in their table becomes +1, O be-
comes — 1, and a “?”’ remains unknown and is treated at
each step as described above.

All three algorithms were applied to the data in the
99 X 14 matrix for 200 000 iterations. Initial values of 8
and incremental steps for increasing 3 were chosen. This

produced a set of permutations with acceptably small A. Markovian-like property of low-lying configurations

values of B, the total number of breaks for a particular L

configuration. For each run, a ranked set of marker per- Let the DNA marker at site j be denoted by f;, where

mutations with the smallest values of B was retained. fj is a member of the set {$16,548,546,54,552,...}.
Table II lists the two distinct “best” orders found by A configuration of sites is denoted by the ordered N-!:uple

each algorithm in a representative run. As can be seen, (f15f25---»fn). We have used underlining to distin-

the first algorithm, where two nearest-neighbor columns  8uish a DNA marker such as S11 from a spin variable
are transposed, does not result in permutations with such as sy;.

values of B that are as low as those reached by algorithms For any configuration of sites, one can define strings
2 and 3. Although in principle, the nearest-neighbor  (fisfit1---5fivm) Withi=1,... yN;0=m =N —i.
transposition should allow for visiting all possible permu- Consider a collection €@ of distinct configurations. In
tations of the columns, in practice, such exploration is the collection the probability of a  string
not efficiently accomplished here. The large (fifiv1--->Sidm) is denoted by
configuration space, and the empirical nature of selecting  P; . ;4m(Fisfiv1s s Sitm)

B to implement simulated annealing, provide a computa- Now consider the Markovian-like approximation

TABLE II. Minimum-break orders for representative simulations. See Table 1.

Algorithm Breaks Marker order
1 205 APP S8 S1 S11 S16 S4 S12 S18 S48 S46 852 S111 S47 SOD
1 207 APP S8 S1 S11 S16 S4 S12 S18 S46 S48 S52 S111 S47 SOD
2 123  S16 S48 S46 S4 S52 S11 S1 S18 S8 APP S111 S12 S47 SOD
2 123 S16 S48 S46 S4 S52 S11 S1 S18 S8 APP S12 S111 S47 SOD
3 123 S16 S48 S46 S4 S52 S11 S1 S18 S8 APP S111 S12 S47 SOD

3 123 S16 S48 S46 S4 S52 S11 S1 S18 S8 APP S12 S111 S47 SOD
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TABLE III. 24 unique marker orders with relatively small numbers of breaks. See Table I.
Breaks Marker order
123 S16 S48 S46 S4 S52 S11 S1 S18 S8 APP S111 512 S47 SOD
125 S16 S48 S46 S4 S52 S11 S1 S18 APP S8 S12 Si11 S47 SOD
126 S48 S16 S46 S4 S52 S11 S1 S18 S8 APP S12 S111 S47 SOD
126 S48 S16 S46 S4 S52 S11 S1 S18 S8 APP S111 S12 S47 SOD
127 S11 S1 S16 548 S46 S4 S§52 S18 S8 APP S111 S12 S47 SOD
127 S16 S48 S46 S4 S52 S11 S1 S18 S8 APP S12 S111 S47 SOD
127 S46 S48 S16 S4 S52 S11 S1 S18 S8 APP S12 S111 S47 SOD
128 S11 S1 S$52 S4 S46 548 S16 S18 S8 APP S12 S111 S47 SOD
128 S11 S1 S52 S4 S46 S48 S16 S18 S8 APP S111 S12 S47 SOD
128 S16 S48 S46 S4 S52 SOD S47 S12 S111 APP S8 S18 S1 S11
128 S16 S48 S46 S4 S52 SOD S47 S111 S12 APP S8 S18 S1 S11
129 S11 S1 S16 S48 S46 S4 S52 S18 S8 APP S12 S111 S47 SOD
129 S11 S1 S16 S48 S46 S4 S52 S18 APP S8 S111 S12 S47 SOD
129 S16 S48 S46 S4 S52 S11 S1 S18 S12 S111 S8 APP S47 SOD
129 S16 S48 546 S4 S52 S11 S1 S18 S111 S12 S8 APP S47 SOD
130 S16 S48 S46 S4 S52 APP S8 S12 S111 S47 SOD S18 S1 S11
130 S16 S48 S46 S4 S§52 APP S8 S111 S12 S47 SOD S18 S1 S11
130 S16 S48 S46 S4 S52 SOD S47 APP S8 S12 S111 S18 S1 S11
130 S16 S48 S46 S4 S52 SOD S47 S12 S111 S8 APP S18 S1 S11
130 S16 S48 S46 S4 S52 SOD S47 S111 S12 S8 APP S18 S1 S11
130 S16 S48 S46 S52 S4 SOD S47 S12 S111 APP S8 S18 S1 S11
130 S48 516 S46 S4 S52 S11 S1 S18 S12 S111 APP S8 S47 SOD
130 S52 S4 S16 S48 S46 S11 S1 S18 S8 APP S12 S111 S47 SOD
130 S52 S4 S46 S48 S16 S11 S1 S18 S8 APP S12 S111 S47 SOD
Py ivmUiSivn - Sivm)
=P i filfivvfivPisrivaivs fivtlfiznfitd) Pism—sitm—ti+mFiem—2lfizm—vSitm) (3.0)
XPiym—ti+mFivm—vfivm) fori=1,... ,N—=2; 2=m=N—i.
r
B. Example 1 P15.5,10(G H,I,J)= P 3 610G H, Py g 1o(H|L,J)Py, 1o(1,J)
Consider the collection of 24 distinct low-lying =(7/11)(11/11)(11/24)
configurations given in Table III. Let (the number of —7 /24 3.6)
markers) N =14. Look at the cluster (f¢=F, f;=G, =7/24 . 3.
Ss=H, f9=1I, f1,=J) where F denotes the DNA marker
S11, G denotes S1, H denotes S18, I denotes S8, and J C. Example 2

denotes APP. This marker assignment corresponds to
the ordering of the first row of Table III.
For the above collection we find the frequency

P¢ 75910 F,G,H,ILJ)= 5, (3.1)
and we also find the frequencies

Pg 1 5(F|G,H)=11/11, (3.2)

P, so(GIH,)=7/11, (3.3)

Pg o 10(H|LJ)=11/11, (3.4)

Py o(1,J)=11/24, (3.5)

so the approximation (3.0) with i =6, m =4 is satisfied by

the observed frequencies.
Similarly, for the

P;4.9,10(G, H,I,J)= L and

above configurations

Consider the same collection of 24 distinct low-lying
configurations used in example 1. Look at the cluster
(f,=B, f3=C, fs=D, fs=E) where B denotes the
DNA marker S48, C denotes S46, D denotes S4, E
denotes S52.

For the above collection we find the frequency

P,,,5(B,C,D,E)=12/24 , 3.7)
and we also find the frequencies

P,;4(B|C,D)=12/15, (3.8)

P;,s(C|D,E)=15/16 , (3.9)

P,s(D,E)=16/24, (3.10)

and again, the approximation (3.0) is satisfied by the ob-
served frequencies.
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However, since

P,,(BlCO)=13/17, (3.11)
P53 4(CID)=15/18 , (3.12)
P,s(D|E)=16/16 , (3.13)
Py3.45(B,C,D,E)=12/24 , (3.14)

the frequencies do not satisfy the standard Markovian ap-
proximation

P, 3,45(B,C,D,E)*P, ;(B|C)P; ,(C|D)P, s(D|E)P5(E) ,
12/24+(13/17)(15/18)(16/16)(16 /24) , (3.15)
0.5070.425 .

In the context of Markov random fields (Spitzer [13]) one
could perhaps find a rigorous basis for the observed
Markov-like property.

1V. DISCUSSION

The implementation of experimental techniques using
RH data provides a bridge between chromosome map-
ping data generated from families and physical mapping
data. RH experiments allow for the relative ordering of
genetic markers that are too closely spaced to be detected
by family linkage analysis. Additionally, it is not neces-
sary to have polymorphic markers in order to generate
useful information. Although not providing the level of
resolution of physical mapping, RH mapping can com-
plement and confirm results generated by pulse field gel
electrophoresis.

Boehnke et al. [S5] have presented a full discussion of
the advantages and disadvantages of parametric and non-

parametric ordering algorithms. As they point out, algo-
rithms that search for minimum break configurations do
not allow for estimates of distances between markers, nor
do they provide relative likelihoods for one marker order
over another. However, as the present work and the
work of Boehnke et al. demonstrate, retention and in-
spection of sets of low-lying configurations yield impor-
tant insight relating to the correlations of markers.

In our study we were interested in. learning what prop-
erties might be present in a set of configurations with rel-
atively few breaks. It became obvious that the set of
low-lying configurations showed the clustering of particu-
lar markers. That was reassuring, since in complex op-
timization problems of the travelling salesman variety,
one typically ends up with a set of low-lying
configurations and never discovers the true absolute
minimum.

One striking feature which we discovered here is that
the set of low-lying configurations is described by a
Markov-like probability distribution. That distribution
contains all of the observed clustering of the markers. If
one enlarges the set of low-lying configurations to include
configurations with larger and larger numbers of breaks,
the validity of the Markov-like approximation
deteriorates. We are not in a position to judge whether
the relation (3.0) is necessarily a deep or broad result, but
we regard it as interesting.
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